

Multiplication as doubling

Year 3		
Concrete	Pictorial	Abstract
Know 2, 3, 4, 5, 6, 8 and 10 times tables.		
Use doubling to connect 2, 4 and 8 times tables.		
Write and calculate multiplication statements using mental and efficient written methods		
Multiplication using repeated addition	Multiplication using repeated addition $3 \times 8=24$	Multiplication using repeated addition $8+8+8=$ $3 \times 8=24$
Multiplication using arrays $4 \times 6=$	Multiplication using arrays $4 \times 6=$ $4 \times 6=24$	Multiplication using arrays $4 \times \square=24$

Year 4		
Concrete	Pictorial	Abstract
Know all multiplication tables to 12×12.		
Use doubling to connect 3 and 6, 4 and 8, 6 and 12 times tables.		
Multiply numbers by 0 and 1		
Multiplying together three 1-digit numbers, knowing that multiplication can be done in any order.		
Use knowledge that multiplication is commutative to find the most efficient order in which to multiply three single digit numbers.	Use knowledge that multiplication is commutative to find the most efficient order in which to multiply three single digit numbers. $15 \times 6=$ We can use our knowledge of factors to help us solve 15×6	Use knowledge that multiplication is commutative to find the most efficient order in which to multiply three single digit numbers. $\begin{aligned} & 2 \times 7 \times 5=\underline{2 \times 5 \times 7} \\ & 2 \times 5=10 \\ & 10 \times 7=70 \end{aligned}$ $15 \times 6=$

	Short multiplication				Using missing numbers			
			4	3			39	9
	X			3				
								6

Year 5		
Concrete	Pictorial	Abstract
Multiply numbers using known facts.		
Concrete (Refer back to previous years for concrete examples)	Pictorial Number line $102 \times 8=816$ $123 \times 5=615$	Abstract $\begin{aligned} & 102 \times 8= \\ & 102 \times \square=816 \end{aligned}$ $123 \times \square=615$

Multiply numbers up to $\mathbf{4}$ digits by 1 or $\mathbf{2}$ digits using a formal written method, including long multiplication.		
(Refer back to previous years for concrete examples)	$\begin{aligned} & 342 \times 7= \\ & \times \begin{array}{\|r\|r\|r\|} 300 & 40 & 2 \\ 72100 & 280 & 14 \\ \hline \end{array} \begin{array}{r} 2100 \\ +\begin{array}{r} 280 \\ \hline 2394 \end{array} \\ \hline \end{array} \end{aligned}$	Short multiplication - Multiply 3-digit by 1-digit 342×7 becomes
(Refer back to previous years for concrete examples)	$2741 \times 6=$$\times$2000 700 40 1 12000 4200 240 612000 + + + + 240	Short multiplication - Multiply 4-digit by 1-digit 2741×6 becomes
(Refer back to previous years for concrete examples)	$$	Long multiplication - Multiply a 2-digit by a 2-diigt 24×16 becomes

Year 6						
Concrete	Pictorial					Abstract
Multiply using all multiplication facts						
Multiply whole numbers and those involving decimals by 10,100 and 1000						
Multiply numbers up to 4 digits by 2 -digit using long multiplication						
(Refer back to previous years for concrete examples)						g. $5249 \times 61=$

(

